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A B S T R A C T

Animals can perform complex and purposeful behaviors by executing simpler movements in flexible sequences.
It is particularly challenging to analyze behavior sequences when they are highly variable, as is the case in
language production, certain types of birdsong and, as in our experiments, flies grooming. High sequence
variability necessitates rigorous quantification of large amounts of data to identify organizational principles and
temporal structure of such behavior. To cope with large amounts of data, and minimize human effort and
subjective bias, researchers often use automatic behavior recognition software. Our standard grooming assay
involves coating flies in dust and videotaping them as they groom to remove it. The flies move freely and so
perform the same movements in various orientations. As the dust is removed, their appearance changes. These
conditions make it difficult to rely on precise body alignment and anatomical landmarks such as eyes or legs and
thus present challenges to existing behavior classification software. Human observers use speed, location, and
shape of the movements as the diagnostic features of particular grooming actions. We applied this intuition to
design a new automatic behavior recognition system (ABRS) based on spatiotemporal features in the video data,
heavily weighted for temporal dynamics and invariant to the animal’s position and orientation in the scene. We
use these spatiotemporal features in two steps of supervised classification that reflect two time-scales at which
the behavior is structured. As a proof of principle, we show results from quantification and analysis of a large
data set of stimulus-induced fly grooming behaviors that would have been difficult to assess in a smaller dataset
of human-annotated ethograms. While we developed and validated this approach to analyze fly grooming be-
havior, we propose that the strategy of combining alignment-invariant features and multi-timescale analysis may
be generally useful for movement-based classification of behavior from video data.

1. Introduction

Quantifying variable and complex animal behavior is challenging:
observers must record many instances of a given behavior in order to
detect changes with statistical power. For example, researchers ana-
lyzed thousands of hours of acoustic data from songbirds to detect small
changes in song structure that result from learning (Ravbar et al.,
2012). Large amounts of video data also present analysis challenges:
manual human annotation of behavior can be slow, labor intensive,
error-prone, and anthropomorphically biased.

Recently, several machine-learning algorithms have been developed
to compress video data, extract relevant features, and automatically
recognize various animal behaviors (Todd et al., 2017; Robie et al.
2017; Mathis et al., 2018). Unfortunately, we were not able to employ
these techniques to our video of fly grooming behavior because our

experimental setting made it difficult to reliably detect fly body parts
and orientation as they remove the dust. This limits the range of be-
haviors and experimental manipulations that can be studied. For ex-
ample, to recognize fly antennal cleaning events from video by a ma-
chine vision algorithm, the front legs must be visible in each frame of
the video with sufficient pixel resolution, the illumination should be
constant enough for background subtraction, the animal’s appearance
cannot change during the experiment and at the very least, the animal’s
position and orientation should be easy to identify by machine (Hampel
et al. 2015). Such dependencies limit the use of existing behavior re-
cognition methods that rely on either good spatial resolution, few oc-
clusions of body parts, easy background subtraction, or constant ap-
pearance. These problems become especially significant when it is
desirable to record behavior in either more natural environments or in
experimental conditions like ours, where flies are covered in dust, and
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as such they present a particular obstacle to research projects like our
work on fly grooming. While here we describe how we address the
machine vision challenge that arose from our specific experimental
settings, we believe our solution should be generally applicable to a
wide range of behavioral data where experimental settings are similarly
unconstrained.

Our motivation to develop new behavior recognition software
comes from ethological investigation of grooming in fruit flies
(Drosophila melanogaster). This behavior is composed of individual
grooming movements (IGMs) performed in a flexible sequence when
the fly is coated in dust (Seeds et al., 2014). IGMs include leg rubbing
and leg sweeps directed toward different body parts to remove debris.
The IGMs are organized into subroutines. For example, flies use their
front legs to alternate between head sweeps and front leg rubbing. We
refer to this subroutine as the anterior grooming motif. Alternation
between abdominal or wing sweeps and back leg rubbing constitutes
posterior grooming motifs. When we experimentally apply dust all over
the fly, it executes grooming motifs in quick succession, beginning with
anterior body parts and then gradually progressing towards posterior
body parts. The sequence of grooming motifs is flexible (variable).
Because one of our research goals is to quantify subtle changes in this
variable sequence with respect to phenotypes resulting from genetically
inhibiting or activation various neural circuits, we need to reliably
analyze hundreds of hours of video recordings of grooming behavior for
potentially subtle perturbations, which drove us to explore automatic
behavior detection methods and ultimately to develop our own.

To elicit naturalistic grooming behavior, we film flies covered in
dust in chambers that allow them to walk and move freely. The dust
often creates patterns over the animal’s body that can make it hard to
separate their whole body from the background. Furthermore, as flies
remove the dust, their appearance changes: for example, when the
wings are covered in dust, the back legs are obscured, but as the wings
are cleaned, the back leg movements become more visible. The ap-
pearance of the background varies as well: the floor of our recording
arena is mesh to allow the dust to drop through, but this makes
maintaining uniform background and lighting difficult. The flies per-
form the same grooming movement with their limbs while their bodies
are in different orientations and positions. All of these aspects of the
video data confound the current behavior classification methods. We
had two possible strategies for achieving accurate automatic behavior
recognition: we could either design a more constrained experimental
setting to ease the computer vision problem or we could rely on more
sophisticated computer vision methods that allow more flexibility in the
types of data to which they can be applied. Here we chose the latter
strategy. We developed a method for behavior recognition from mas-
sive data sets that functions in less-constrained experimental settings
such as ours and presents a major step toward naturalistic behavior
analysis.

In general, behaviors can be either identified from particular con-
figuration of body parts – spatial information (for example, a posture of a
golf player may indicate what move she does next), from the dynamics of
the movements – temporal information (for example, the periodic timing
of the swings) or from a combination of both – spatiotemporal in-
formation (for example, the shape of the swinging movement). Our so-
lution is to combine spatial with temporal information, putting more
weight on temporal information in cases where spatial information is
limited. This idea draws inspiration from biology: in peripheral vision, it
is very difficult to count the number of fingers on a hand if presented far
from the center of the visual field (poor spatial information) but it is
relatively easy to count the number of hand motions (sufficient temporal
information) because our peripheral vision is more sensitive to move-
ment than to spatial information. As we will describe below, our strategy
for automatically recognizing grooming movements is based on the
principle to “gain in time what we lose in space”.

We combine spatial with temporal information to obtain spatio-
temporal features of our data that do not vary as a function of animal’s

position or horizontal orientation in the scene. They encode useful in-
formation about movement class even when behavior would be difficult
to discern from individual movie frames. While this approach allows us
to recognize certain movements without having to determine the fly’s
orientation or locate individual body parts, it introduces a new problem
of differentiating between behaviors that have similar temporal features
but differ in spatial features (e.g. front vs. back leg rubbing). We solve
this problem by carrying out the behavior classification, based on su-
pervised machine learning, in two steps, corresponding to two time-
scales: first we determine broad time-scale behavioral context (e.g.
anterior vs. posterior grooming behavioral motifs); and second, we
determine individual grooming movements that happen on a much
faster time-scale (leg rubbing vs. body sweeps). In other words, what we
lose in spatial context (the location of body parts engaged in the be-
havior), we regain in temporal context (broad time-scale).

2. Results

2.1. Method summary

To foster readability for diverse audiences, we present a conceptual
overview of the ABRS pipeline in the Methods summary, in this section,
and the detailed technical description of the methods in MATERIALS
AND METHODS. We also provide the Python code on GitHub repository
(https://github.com/AutomaticBehaviorRecognitionSystem/ABRS).
However, this section should be sufficient for understanding of the
ABRS method and for reviewing the results.

Here we describe our Automatic Behavior Recognition System
(ABRS) as applied to fly grooming, demonstrate that this system can
reliably and quickly recognize various behaviors without any image
segmentation or detection of body parts. We show the results of beha-
vioral analysis of 91 stimulated wild-type grooming flies, including the
dynamics of behavioral sequence structure at multiple time-scales.
Fig. 1 presents an overview of the steps in the ABRS workflow: fly
detection and tracking (Fig. 1A), extraction of spatiotemporal features
(Fig. 1B), and dimensionality reduction and behavioral classification
(Fig. 1C). Subsequent figures explain how each step is accomplished.

2.1.1. Fly detection and tracking
We record video of a fly freely moving in a flat arena large enough

to facilitate natural (non-flying) behavior, which consists of grooming
and walking bouts (radius =0.5 cm, height= 3mm, 1024× 1024
pixels at 30 Hz). Since individual flies occupy only a small portion of
the space in each frame, the first step of the video-processing pipeline is
to remove uninformative pixels. We locate the fly by detecting move-
ment in a 17-frame time window (˜500msec) and crop to a region of
interest (Fig. 2A, 5×5mm). The time window is wide enough to dis-
tinguish the animal’s movements from noise in light fluctuations but
still narrow enough to detect changes in its location. We accurately
track flies for the entire 30min (1700sec) video; when the resulting fly
trajectory is annotated with human-provided behavior labels, we see
that the fly remains relatively stationary while grooming (Fig. 2B and
C).

2.1.2. Spatiotemporal feature extraction
Grooming movement signatures can be identified by spatiotemporal

features: adjacent pixels in which light intensity changes with time in a
periodic manner. For example, as the front legs move back and forth
during leg rubbing, the light intensity in the affected pixels changes
periodically. We compute the frequency of the light intensity fluctua-
tions in those pixels by applying Fourier Transformation to light in-
tensity time-traces over a 17-frame, 500msec sliding window. We refer
to this combination of spatial information (position of pixels) with
temporal changes of light intensity in each pixel as spatiotemporal images
(ST-images; Fig. 3A). An ST-image thus represents the “shape of
movement” at a given time in the video. Fig. 3B, top row, shows still
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images of four different grooming movements (front leg rubbing, head
cleaning, abdominal cleaning and back leg rubbing) and the corre-
sponding ST-images (second row). (See Video 1 in Supplemental Data
for more examples of grooming movements.) The fly can perform the
same type of grooming movement anywhere in the arena, resulting in
the shape of the movement located and oriented differently in the ST-
images (the first two ST-images in Fig. 3B). But the spatiotemporal
features should be invariant to position or orientation of the fly in the
arena. We accomplished this by Radon Transformation (RT) of all ST-
images (van Ginkel et al., 2004) Briefly, the RT computes integrals
along lines placed at all angles and displacements across the image. The
computed values of these line integrals are then plotted according to the
angles (x-axis) and displacements (y-axis) of each line. The results ob-
tained by this operation are illustrated in Fig. 3B, where different in-
stances of front leg rubbing behavior in different positions and or-
ientations produce similar triangular shapes in the ST-images (first two
ST-images), while head cleaning, abdominal cleaning, and back leg
rubbing produce ST-images with distinct shapes. After applying the RT,
however, the same shapes in the ST-images result in the same Spectra of
RT, regardless of their position or orientation in the original ST-image
(first two images in Fig. 3B), effectively bringing the signatures of the
same types of movements into a common frame of reference.

2.1.3. Dimensionality reduction using unsupervised learning
In the previous section, we described how the original video of

grooming flies is converted into ST- images and further processed by

Radon Transformation so that they can be compared in orientation and
translation invariant manner. The next step is to determine which
features best separate these images into discrete behavioral categories.
The images shown in Fig. 3B have 80×80 pixels and 6400 dimensions,
but many of these dimensions may be redundant or may represent noise
in the data. We reduce the number of dimensions to only the most in-
formative ones (or their linear combinations) using a representative
training data set that contains instances of all relevant movements. We
then apply Singular Value Decomposition (SVD), to the training data,
compressing it to the 30 most informative dimensions, as shown in
Fig. 4A–D. These 30 dimensions are equivalent to the eigenvectors of
the squared data matrix, and thus similar to the principal components.
They form the bases of the low-dimensional space in which data can be
more efficiently classified. A significant advantage of the ABRS method
is that the low-dimensional representation only needs to be learned
once – the 30 bases obtained by SVD can be stored and reused with new
data. The new data can be projected to the 30 bases to obtain the 30
spatiotemporal features. These 30 bases therefore act as filters through
which all new data can be passed for the purpose of compressing it into
30 spatiotemporal features used for behavior classification. Fig. 4C
shows an example of how these spatiotemporal features relate to dis-
tinct behaviors observed in a short segment of a movie. Note, for ex-
ample, that the first feature tends to be high during abdominal
grooming behaviors while the second feature to correlates with anterior
grooming. The changes in these features correspond well to the changes
in grooming movements identified by human observers, suggesting that

Fig. 1. Overview of steps in grooming behavior analysis. A: A single fly in the recording arena is detected by its movement and the area around the fly is cropped out.
B: Space-time images (ST-images) are produced (middle panel) from consecutive frames (left panel) and are made orientation-translation invariant (right panel) by
Radon Transformation (Spectra of RT). C: Dimensionality reduction is accomplished by unsupervised learning with singular value decomposition (SVD) and clas-
sification of behavior is carried out in two steps, corresponding to two different time-scales. D: Large numbers of behavioral records (ethograms) can be produced by
this method efficiently.
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they reliably describe recognizable aspects of the behavior (Fig. 4C).
To illustrate how these features separate distinct behaviors, we used

t-Distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten
and Hinton, 2008) to display the distribution of our 30 dimensional

data onto two axes (Fig. 4D; note that we are only using this technique
for visualization; classification is performed using 30 dimensions). The
different behaviors identified by human observers are color-coded and
clearly fall in distinct areas of t-SNE projection space, suggesting that

Fig. 2. Fly detection and tracking. A: The animal’s position in the arena is determined by identifying pixels that show activity, as reflected in the change in light
intensity in a 17-frame (500ms) time window. The red box shows the region of interest around the fly selected for subsequent processing steps. B: The plot of position
over time shows that the fly can be reliably tracked throughout the entire recording session (1700sec/28min). Color-coding the positions in time using human
annotations of grooming movements suggests that a fly remains stationary for several seconds while performing each movement. C: Animal’s body velocity over
28min of the movie. The framed area is enlarged below. Color-coding is done by same human annotation as in B.
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Fig. 3. Spatiotemporal feature extraction. A: The image in each frame is cropped to an area of 25mm2 (80× 80 pixels) around the fly’s position and the light
intensity is recorded in each pixel across a sliding 17-frame time-window (˜0.5 s) to produce 6400 time-traces of light intensity. Each time-trace is decomposed by
Fourier Transform and the center of gravity of each spectrum is computed to generate a movement map called a Spatiotemporal image (ST-image). Time-traces
corresponding to pixels where light intensity changes periodically tend to have higher centers of gravity of their spectra - these are indicated by red traces and yellow
pixels with high values in the resulting ST-image on the right. The time-traces where light intensity does not change above the threshold (blue traces) are discarded
and their corresponding value in the ST-image is set to zero. B: Examples of grooming behaviors (central frame of sliding window shown for each) and the
corresponding ST-images. The first two ST-images are produced from the same behavior (front leg rubbing) but the flies differ in the position and orientation. The
other three ST-images are produced from different grooming behaviors. Identification of a grooming movement does not depend on the position or orientation of the
fly because ST-images are transformed by Radon Transformation (third row of images) and a second Fast Fourier Transformation to produce 2 D power spectra. Two
examples of front-leg rubbing show the same 2 D spectra, while the spectrum from head cleaning is different.
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our features do indeed separate grooming behaviors sufficiently for
meaningful classification.

2.1.4. Behavior can be classified from spatiotemporal features
Both spatial and temporal features of video data help categorize the

fly’s grooming behaviors. We have described how raw movie data is
reduced to 30 spatiotemporal features, and the main advantage of these
features is that they are invariant to the precise orientation or location
of the animal in the arena, which makes them useful for challenging
experimental settings like ours. This advantage unfortunately creates a
new problem: movements with similar shapes in the ST-images are
difficult to separate. For example, front leg rubbing and back leg rub-
bing are similar movements and so produce similar ST-images. What
makes front and back leg rubbing distinct to human observers is where
the movements occur in relation to the fly’s body: we observe that front
leg rubbing occurs during the anterior grooming motif, while back leg
rubbing is nested in the posterior motif. To overcome the difficulty, we
designed a two-step classification method, described below, which was
inspired by the way humans recognize these behaviors and by how flies
organize grooming in nested time-scales.

In the first step of the classification, we determine whether the fly is
engaged in anterior or posterior grooming, walking, or standing. These
motifs provide the context for grooming behavior and occur over longer
time scales (seconds). To do this, we perform a supervised technique,
Linear Discrimination Analysis (LDA) (Welling, 2005), which can be
used to find a direction that best separates data according to human
labels. The LDA was applied to the 30 spatiotemporal features

evaluated over a broader time-window (90 frames, 3 s) that robustly
partitions behavior into anterior or posterior grooming motifs, walking
or standing (Fig. 5A, C). Two examples of behavioral motifs, one
anterior, one posterior, are indicated by red and blue frames respec-
tively in Fig. 5A, B. The broad, 3-second, time-window smooths the
features such that individual grooming movements (e. g. front leg
rubbing) are no longer discernible, while the broad time-scale beha-
vioral motifs survive the smoothing. We have already shown that our
30 spatiotemporal features are sufficient to separate these broad time-
scale motifs from each other (Fig. 4C), so it is not surprising that a
simple supervised machine learning method such as LDA can be used to
efficiently perform the separation. LDA is an algorithm that can find the
direction, in a multi-dimensional space, that maximizes the distances
between the data points belonging to different categories (different
behavioral motifs, in our case), while minimizing the variance within a
category (Welling, 2005). The resulting dimension therefore best se-
parates the data belonging to different categories. In our case the output
of the first step is expressed in terms of probabilities of behaviors
(anterior, posterior and walking). Subtracting probability of anterior
motif from probability of posterior motif gives us the time-series (a
dimension) that best separates those two behavioral motifs. We named
this dimension “Dim A–P” (the y-axis in Fig. 5A). This first step of the
classification therefore provides the behavioral context, dividing var-
ious behaviors into anterior or posterior motifs.

In the second step, we apply another iteration of the LDA (again
using human labels) within each motif separately to identify individual
grooming movements (IGMs): front leg rubbing and head cleaning

Fig. 4. Dimensionality reduction with unsupervised learning. A: A training set of these spectra (68,688 images) is decomposed by Singular Value Decomposition
(SVD) and the first most informative 30 bases are selected according to singular value Sigma (B) - unsupervised learning will be carried out in the space of these
bases. These bases are sufficient to reconstitute the diagnostic features of each input image with appropriate weighting factors (w1-4 shown). This reduces the
original 6400 dimensions (number of pixels in a Spectrum of RT) to 30 dimensions we refer to as spatio-temporal features. C: To demonstrate that even the first 10
spatiotemporal features are sufficient to discriminate among grooming movements, we aligned them to manually scored grooming behavior for 50 s of video; note
that different combinations of spatiotemporal features correlate with different grooming behaviors and the combination of features shifts when the behaviors do. D:
An alternative way to visualize how these spatiotemporal features explain the behavioral variance is shown in the t-Distributed Stochastic Neighbor Embedding (t-
SNE) map that projects 30 dimensions into two-dimensional space, preserving distance between neighboring data points and showing temporal connections between
the data points as dashed lined. For example, the data points that correspond to frames a human observer labeled front leg grooming (orange) are clustered in the t-
SNE map.
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subdivide the anterior motif, while abdomen, wing sweeps, and back
leg rubbing happen within the posterior one (Fig. 5B, C). In this step of
classification, we feed the LDA model with raw features (no smoothing)
and the outputs of the first step LDA model (probabilities of behavioral
motifs). The outputs of the second step are the probabilities of IGMs.
Again, as in the first step we separate IGMs from each other by com-
puting the differences between their probabilities, obtaining time-series
that best separate the IGMs from each other (in Fig. 5B “Dim f–h” se-
parates front leg rubbing from head cleaning, for example). We can now
solve the problem of distinguishing between grooming behaviors with
similar movement shapes in the ST-images (e.g. back leg rubbing vs.
front leg rubbing) because we have already determined the temporal
context in which they occur. In other words, while some different be-
haviors may result in similar ST-images on the short time-scale, they are
distinguishable on a broad time-scale.

Final production of ethograms involves separating the data ac-
cording to outputs of the first and the second step (Dim A–P, Dim f–h,
etc) by stationary or dynamic thresholds. (Setting these thresholds in-
volves only three user-set parameters – the only manual step in the
pipeline.) While the usage of LDA effectively separates behavioral
classes from each other, it also generalizes well within a class. For

example, a fly performing head sweeps on the vertical side of the arena
appears different from a fly performing head sweeps while standing on
the floor of the arena, yet in both cases the data from this behavior will
fall on the same side of the LDA-determined threshold and both cases
will be classified as head cleaning behavior. An example of the final
form of an ethogram is shown in Fig. 5B, aligned with a human-gen-
erated ethogram for comparison.

As with dimensionality reduction step, described in the previous
section, the LDA training with human labels needs only be done once to
produce the LDA models. New data can then be fit into the LDA models
to obtain behavioral probabilities. This saves time and provides con-
sistency between subsequent data-sets. For example, once the 30 spa-
tiotemporal features are computed, it takes only about 60 s to complete
the behavior recognition and ethogram production of the dataset con-
taining 91 27.8-minute movies. This processing speed makes it possible
to consider real-time behavior recognition and closed-loop experiments
in future. (In the ABRS GitHub repository we include a Python script
that can be used to classify grooming behaviors in real time. Although
the results are preliminary, we anticipate that the real-time output can
be improved with better LDA training or with application of neural
networks.)

Fig. 5. Classification of grooming movements using two time-scales. A: Longer Timescale (Step 1): The 30 spatiotemporal features, smoothed over a 3 sond window,
are sufficient to reliably separate broad behavioral motifs (anterior grooming - red, posterior grooming – blue, and walking - black). The motifs are separated by
Linear Discrimination Analysis (LDA) trained by human labels. The y-axis is the LDA-obtained dimension (Dim A–P) which best separates anterior behaviors from
posterior. The colors are human labels. Dynamic thresholds are then used to produce ethograms of the behavioral motifs. An ethogram thus produced by the
automatic method (M) is compared to that labeled by humans to illustrate agreement (H).B: Shorter Timescale (Step 2): Using the 30 spatiotemporal features and no
smoothing (time window of one frame or 33msec) enables the three behavioral categories, identified in A, to be further subdivided into 5 classes that correspond to
the individual grooming movements (IGMs) as recognized by human observers. As in A, the LDA is used sequentially to separate pairs of IGMs from each other, using
human labels. The LDA-obtained dimensions that best separate IGMs (Dim f–h and Dim a–b) are shown (see color legend above). The classification was performed
separately for anterior behaviors (Dim f–h) from posterior behaviors (Dim a–b). Human (H) and machine-produced (M) ethograms obtained by this method are
shown for comparison. C: For both time-scales, the classification of behaviors is done by LDA. This is illustrated schematically in three dimensions obtained by LDA,
with the color code corresponding to the human labeled behaviors at each step (see color legend above). First (Step 1), all of the data is clustered into the three broad
behavioral motifs. Then (Step 2) the data is further divided into six classes corresponding to the IGMs.
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2.2. Validation

We validated the automatically produced ethograms by comparing
them to human-annotated behavioral records. Encouragingly, the
agreement between our automatic method and individual humans was

not significantly different from the agreement between individual
human observers (Fig. 6A and B). At the level of grooming motifs
(Anterior, Posterior, and Walking), the agreement between automatic
behavior classification and the consensus between two humans was
97.2% (Fig. 6A) while human agreement is 99.6%. At the level of

(caption on next page)
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individual grooming movements (IGMs) the agreement between ma-
chine and human consensus was 74.1% while between the human ob-
servers the agreement was 85.4% (Fig. 6B), with most of the dis-
agreements originating from identification of precise time of behavioral
onsets and offsets (Fig. 6E). ABRS and humans agree on the general
pattern of alternations between anterior IGMs (front leg rubbing (f) and
head cleaning (h) but disagree on specific IGMs precise initiations,
terminations and durations.

Because we are particularly concerned with quantifying behavioral
characteristics, such as the total amount of time spent in a particular
grooming behavior or duration of behavioral motifs, we also compared
these aggregate properties. The results obtained from the automated
method (M) and human-annotated ethograms (H1, H2) show similar
total amount of time spent in a behavior (Fig. 6C, left). The durations of
behavioral motifs are also similar (Fig. 6C, right). For each type of
behavioral motif (anterior, posterior and walking) the difference in
median durations of the motifs between automated method (M) and
human observers (H1, H2) are not significant (p-values> 0.1 between
all pairwise comparisons; two-sample t-test).

Another behavioral characteristic that is especially relevant for se-
quential behavior such as grooming movements is syntax, defined as
the transition probabilities between behaviors. In Fig. 6D we thus
compare the syntax obtained from human-labeled (H) and machine
labeled (M) ethograms. While the overall syntactic structure appears
similar, there noticeably are more transitions between abdominal
grooming (a) and wing grooming (w) in the automatically produced
ethograms, likely due to the short transition through abdominal
grooming movement, on the way from back-leg grooming to the wing
grooming behavior.

We thus conclude that performance of our automated method for
behavior recognition is comparable to human observers in recognition
of broad time-scale behavioral motifs, IGMs, total time spent in a be-
havior, durations of behavioral motifs and the syntax.

2.3. Behavior analysis using large datasets

With the performance of ABRS validated, we can use this method to
quickly and reliably annotate massive amounts of video data, resulting
in ethograms representing behavior in large populations of animals.
Analysis of ethograms produced from 91 videos of stimulated wildtype
flies (each video is 27.8 min long) (Fig. 7A) confirm the anterior-to-
posterior progression of grooming movements that we had previously
observed and quantified manually (Seeds et al., 2014), but with a much
greater sample size (Fig. 7B and C). We can now quantify significant
changes in the frequency of grooming behaviors and walking over time
as the flies remove the dust. For each ethogram we compute the time
when the cumulative amount of anterior behavior reaches half of the
total amount of anterior behavior. We refer to this point in time as
“half-time”. The average half-time across all the flies equals 663 s
(SD=109 s, n=91) after the time when flies are stimulated by the
irritant. The ethograms in Fig. 7A are sorted according to the half-time.
Prior to half-time, the probabilities of broad time-scale behavioral
motifs change sharply (r-squared= 0.79, 0.84 and 0.71 for anterior

motifs, posterior motifs and walking respectively; p-values< <
0.001). Specifically, anterior grooming movements decrease sharply
within the first 663 s post-stimulation, while posterior behaviors in-
crease. After the 663 s these grooming behavioral dynamics become
more stable (r-squared<0.38,< 0.13 and 0.32) although residual
changes in probabilities remain significant due to continuing increase
of walking behavior, and the animals switch between anterior and
posterior motifs with approximately constantly higher probability of
anterior behavior. Similar dynamics are also reflected in terms of IGMs
(Fig. 7C). This result suggests that the stimulus-related drive for pos-
terior and anterior behaviors stabilizes after a period of time from the
initial stimulation and provides a new signal upon which to align the
ethograms of individual flies.

2.3.1. Quantification of intra-motif behavioral dynamics
Automatic analysis and recognition of behavior in dust-stimulated

flies also enables us to quantify short time-scale behavioral dynamics
that would be difficult to observe in smaller data sets. In Fig. 8 we show
strong periodicity observed in alternations between leg cleaning (f, b)
and body-directed movements (h, a, w). This data set, together with
LDA derived features described in the previous sections (probabilities of
behaviors Dim f–h and Dim a–b), can be used to measure the durations
of these alternation cycles (Fig. 8B). Weak periodicity would be re-
flected in highly dispersed (high spread) of average f–h/a–b cycle
lengths, while strong periodicity would result in tight distribution of
cycle lengths. The top panel in Fig. 8C shows the mean durations of f–h
vs a–b cycles of the 91 ethograms. While there is no significant corre-
lation between durations of f–h and a–b cycles of the same flies, almost
all (> 99%) average cycle lengths fall between 1.0 and 1.5 s for f–h and
1.5–2 seconds for a–b alternations. Such tight distribution of cycle
lengths across a large number of animals suggests a strong periodicity of
alternations between IGMs. Next we asked whether f–h/a–b cycle
lengths sampled from first half-time of the ethograms are correlated to
those cycle lengths sampled from the second half-time. If the alterna-
tions between leg rubbing and body-directed movements (f–h or a–b)
were governed by pattern generation circuits, we would expect a cor-
relation between their durations. While we anticipate that individual
grooming movements (eg. leg rubbing) will be controlled by central
pattern generator circuits, the periodic alternations between individual
grooming movements performed by the same leg (f–h) suggests the
possibility of inter-limb, intermediate time-scale pattern generators as
well, which we are now experimentally investigating. Fig. 8C, bottom
panel, shows strong correlations of cycle lengths between the first and
the second half-time (r-squared= 0.13 and 0.04 for f–h and a–b cycle
lengths respectively; p-values are< 0.001 and 0.05 respectively.

3. Materials and methods

3.1. Animals and assay

These analyses used the Canton S wild-type strain of Drosophila
melanogaster. Flies were reared at room temperature (21 °C, ˜50%
humidity) with day/night cycle of 16:8hrs and assayed at matched

Fig. 6. Validation of automatic behavior recognition system (ABRS). A: Ethograms of grooming motifs (Anterior, red; Posterior, blue; and Walking, black) obtained
by machine (M) and human observers (H1, H2) show good agreement, which is quantified below in confusion matrices (rows – machine; columns – humans).
Diagonal terms show agreement and off-diagonal terms show disagreement; comparisons between machine (M) and humans (H1 and H2), between two human
observers, and between machine and the consensus between humans all show greater than 90% agreement. B: The accuracy of detecting individual grooming
movements (IGMs) was also analyzed by comparison of human and machine ethograms using confusion matrices and shows 60–90% agreement. C: The ABRS
performs similarly to human observers when aggregate characteristics of grooming behavior are considered. The percentage of time spent doing each individual
grooming movement (f, h, a, b, w) and walking (wk) are very similar, as assessed by comparing automatic (light grey) and manual (gray and blackbars) annotation
(left). The median behavioral motif durations are also very similar between all three methods of annotation. D: Syntax structure of grooming behavior obtained by
human and machine. Thickness of edges shows transition probabilities, while thickness of nodes and shade of edges indicates probability of behavior. As an example,
front leg< >head transition probabilities: for machine PM(h|f)= 0.92 and PM(f|h)= 0.98; while for humans PH1(h|f)= 0.92, PH1(f|h)= 0.73 and PH2(h|f)= 0.97,
PH2(f|h)= 0.80. E: Most disagreements between Machine and Humans are in determining the precise beginnings and ends of IGMs. The general pattern of alter-
nations between f and h is similar but the exact start and end points differ.
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circadian time. Males of 3–8 days old were selected and transferred
without anesthesia. The dusting assay was performed according to the
detailed methods described in (Seeds et al., 2014) using Reactive
Yellow 86 powder (Sigma). Four flies were videotaped simultaneously,
in four separate arenas (each 15mm in diameter and 5mm in height)
where they can walk and groom but not fly. The chamber walls and
ceiling were coated with insect-slip and Sigmacoat to encourage flies to
remain on the floor where the camera focus was optimal.

The flies were videotaped through a magnifying lens (camera
model: TELEDYNE DALSA, CE FA-81-4M180-01-R 18007445) to pro-
duce 2048× 2048 pixel images that include all four chambers. These
videos were then processed in with custom MATLAB scripts to divide
spatially into four separate movies.

Video was collected for 27.8min to capture essentially all grooming
movements, at a frame rate of 30 Hz, which is sufficient temporal re-
solution to detect individual leg sweeps or rubs. The video was then
divided into 1000 frame AVI clips for subsequent image processing. For
each fly in the chamber the first 50 AVI clips were selected (50,000
frames in total).

3.2. Pre-processing of video data and fly tracking

The position of each fly was tracked by detecting changes in light
intensity in every pixel across a sliding time-window, W=30 frames
(1 s). The window slidies with one-frame steps across all frames,
i=1,2,… I, where i is the frame index and I the total number of frames
and clips were stitched together to avoid gaps. Differences in light in-
tensity were computed by subtracting light intensity in each frame Fi
from the preceding frame Fi-1 and then adding the resulting differences
across the time-window W (Eq. 1).
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The differences Di where normalized by dividing them by total light
intensity in corresponding frames Fi to compensate for uneven lighting
across the frame.

Animal’s position in the arena, for each frame Fi (xi, yi) was then
determined by finding the peak of Di (Eq 2). The positions xi, yi are
stored in vectors x and y.

Fig. 7. Analysis of sequences of grooming behavior in flies stimulated by dust. Automatic annotation allows detection of behavioral features not immediately obvious
to human observers and trends that emerge only after analyses of large quantities of behavioral records. A: Here, 91 automatically generated ethograms (1700sec
each) of dusted wild-type flies are analyzed to show the temporal progression of grooming behavior. The ethograms are sorted according to “half-time” (shown on the
right), the time at which half of the total anterior grooming behavior is completed, for each ethogram. B: The probability of performing each behavioral motifs
changes over the course of the assay as flies remove dust from various body parts; anterior grooming motifs occur very frequently at the beginning and sharply
decrease with time, while posterior motifs and walking behavior gradually increase. On average, flies complete half of the anterior behavior in 663 s after the
stimulation, as indicated by the dashed line (SD=129 s). The behavior dynamics largely stabilize after the half-time point (as reflected in the R-squared values
shown in B-left panel, for pre- and post-half-time) although they are still statistically significant (p-value< 0.02 for all three motifs). C: These trends are reflected in
IGMs as well.
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Fig. 2A shows the total change in light intensity for all pixels in the
time-window (Di) and Fig. 2B is presenting the tracked position of the
fly across the entire recording session of 1500sec (vectors x and y
plotted across time). Fig. 2C shows the speed of the animal as measured
by changing of the position.

The fly’s position was used to crop the 400×400 region of interest
(ROI) around it, which reliably covers the entire body of the fly, re-
gardless of where the peak of Di was discovered.

The data in the ROI were sub-sampled by averaging pixel values in
5× 5 patches. This resulted in 80× 80 pixel frames, Ti, where i=1,2,
… I. These Ti regions were subsequently used for extraction of spatial-
temporal features. The pre-processing steps described here is done fully
automatically and do not require any human input. However, several
parameters can be modified by the user in order to extend this method
to other animal models. For example, the sub-sampling can be reduced
(increasing the spatial resolution) or the threshold for minimal move-
ment can be changed to discard the frames where nothing is happening
(by default there is no minimal movement threshold).

3.3. Feature extraction

Spatial-temporal features were extracted from a stack of 17 con-
secutive frame, 80× 80 pixel regions (Ti), a time-window of 0.57 s
(Fig. 3A). The time-window was sliding across the entire data-set, with

the step of 1 frame. Each Ti area in the time-window was turned into a
column vector tw(the length of which equals the number of pixels in Ti,
P= 6400), where index w=1,2,… W, and W is the size of the time
window (W=17). We stacked column vectors tw to construct a P x W
matrix T (Eq. 3):
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The rows of matrix T range across space and the columns of T range
across time. For each member of T (each pixel in the time-window) we
read the light intensity value. This produced 64,000 light intensity
time-traces (64,000 rows in matrix T, or one time-trace for each pixel in
each region Ti). This is illustrated in Fig. 3A (middle).

Time-traces were relatively flat for those pixels where light intensity
did not change much within the time-window (blue traces in Fig. 3A),
whereas for pixels where light intensity changed periodically (notably
when the fly was engaged in grooming behavior) the time-traces were
roughly sinusoidal (red traces Fig. 3A, middle). In order to quantify the
shape of each time-trace, we decomposed each of the 64,000 time-
traces by Fast Fourier Transformation (FFT) to obtain Fourier trans-
form, Fp, for each time-series. The magnitude of each Fp (spectrum) was
retained and stored in vector fp. Vectors fp were stacked as rows of P x F
matrix F (P=number of pixels, F=length of spectrum fp). We obtained
matrix F by running the Python Numpy function, fft(), across the P rows

Fig. 8. Analysis of intra-motif dynamics in dust-stimulated flies. A: 91 ethograms of dust-stimulated flies (same as in Fig. 7 but sorted according to f–h cycle length).
Periodic alternations between IGMs (f–h and a–b) seem ubiquitous across animals (enlarged area indicated by the red frame).B: We use LDA Model-derived
probability time-series (outputs of the LDA model, expressed as probabilities of behaviors), LDA dim f–h –above, LDA dim a–b – below, to analyze the intra-motif
alternations. The behavior probability values (colored dots) are colored by behavioral categories; red lines are smoothened versions of the LDA features for anterior
and posterior behaviors respectively. The smoothened features are used as the thresholds for the classification. Examples of anterior motif (f–h cycles) and posterior
motif (a–b cycles) are shown. The data are colored by behavior (same legend as in previous figures). C: The intra-motif cycle length is highly conserved across the 91
stimulated flies. Ethograms are sorted according to f–h cycle length (first 90 s shown in the left panel). Each dat A-P oint represents one ethogram. Top: there is no
significant correlation between average f–h and a–b cycle durations. Bottom: mean f–h cycle durations (red) and mean a–b cycle durations (blue) from the first half-
time are strongly correlated with the f–h/a–b cycle durations from the second half-time (p < 0.001). Each datA–Point shows f–h cycle (red) and a–b cycle (blue)
lengths, sampled from first vs second half-time of the ethograms.
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of matrix T (Eq. 4).

= …f f fF [ ; ; ]P1 2 (4)

In order to obtain a single value for each spectrum fp we computed
its center of mass, cp (Eq. 5).

=c
f j
f

p j j

j j (5)

In Eq.5 j = 1, 2, 3….F. Thus for P rows of F (6400 rows) we obtained
a vector c containing centers of mass, cp, of each spectrum in F (Eq. 5b):

= …c c c c[ ; ; ]P1 2 (5b)

We assigned the values from vector c (containing the centers of
mass of spectra) to each corresponding pixel p as shown in Fig. 3A
(right). (While here we are using a single value (center of gravity) as a
spectral feature, other temporal features can also be added to the ST-
image. It is possible to design ST-images with three or more channels
(colors) which correspond to different temporal features. See the ABRS
GitHub page for experimentation with such multi-channel ST-images.)

(Vector c was re-shaped into an 80×80 matrix.) Thus we produced
spatial-temporal images (ST-images), IST, where each pixel is assigned
the value of center of mass, cp, of the spectrum computed from its
corresponding time-trace (Fig. 3A, right). The ST-image can be re-
presented by the matrix I in Eq. 6, where x and y are coordinates of
pixels.
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3.4. Achieving rotation/translation invariance

Fig. 3B shows individual frames (ROI) sampled from video clips
where flies were engaged in various grooming behaviors (top row) and
ST-images produced from data sampled from the time-window around
these frames (second row). Because we include no a priori knowledge of
fly’s orientation and position of its body parts, we cannot directly
compare ST-images from cases where animal’s orientation and position
are not the same. Note the first two frames in Fig. 3B and their corre-
sponding ST-images. The shapes in these two images are identical ex-
cept for their orientation and position (one image is a rotated and
shifted version of the other). The spatiotemporal features that we ex-
tract from images with identical shapes should be the same, no matter
how the shape is oriented and positioned in the image. In order to
compute such rotation/translation invariant features we performed
three additional operations on the ST-images. First, we transformed the
ST-images (IST) by Radon Transformation (RT) to produce Radon
Transforms of the ST-images, shown in Fig. 3B, third row from top. The
RT transforms rotation into translation by computing intensity integrals
along lines cutting through the original image ST-image (IST) at various
slopes and intercepts. The images in Fig. 3B, third row, represent Radon
Transforms of the ST-images shown above them (second row), where
each column is the slope of the line cutting through the original ST-
image and each row is the intercept of the line. There are 180 columns,
corresponding to 180 slopes (1° to 180°, with 1° increments) and 120
rows, corresponding to 120 intercepts (so the size of Radon Transform
images is 120×180). The value in each point in a Radon Transform
image is the magnitude of the intensity integral of the cutting line.
Radon Transformation is an invertible operation, so no information is
lost (we can reconstruct the original ST-image by Inverse Radon
Transformation).

In the next two steps we decomposed the resulting Radon Transform
images (such as those shown in Fig. 3B, third row) by Fourier Trans-
formation, first along the columns and then along the rows (Eq. 7),

obtaining spectra of Radon Transform images, ISTR, which we store in
matrix R (Fig. 3B, third row) (Eq. 8).
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In order to understand what this operation does, compare the first
two Radon Transforms in Fig. 3B (third row). The spread of energy in
these two images is identical but its position in the image differs be-
tween the two images (see the third Radon Transform as an example of
different spread). The first FT decomposition, across the columns pro-
duces spectra of the columns (image not shown). The magnitudes of
these spectra are the same, no matter where, along the columns of
Radon Transform images, the energy spread is positioned (the position
information is now contained in the phase of the Fourier Transforms and
is discarded). Notice that the spread in the two Radon Transform
images is also shifted along the x-axis (representing the angles). That
shift persists in the spectra resulting from the first FT (the intermediate
result not shown). In order to get rid of this shift, the second FT is
performed across the rows of the spectra.

To summarize, we retained the energy spread in the Radon
Transform images, which contains information about the shape in the
original ST-image, and discarded the phase (which contains informa-
tion about translation and rotation of the shape in the original ST-
image). Again, note that the first two ST-images (IST), in Fig. 3B (second
row), correspond to the same behavior but differ in their orientation
and translation. The final spectra of those two ST-images (ISTR), re-
sulting from operations described above (and Eq. 7), however, are
identical (Fig. 3B, last row, first two images). The sizes of the spectra of
the ST-images, ISTR, are the same as the sizes of the ST-images.

These transformations complete our final pre-processing step.

3.5. Dimensionality reduction and training

We applied Single Value Decomposition (SVD) to reduce the di-
mensionality of the data before the classification can be carried out. The
training data set consisted of 216 video clips of wildtype dusted flies,
capturing various time-points from the onset of grooming behavioral
sequences. We used every tenth 30 s clip from several independent
movies to obtain examples of all the individual grooming movements.
The training data was pre-processed as described in previous sections
and the total of 68,688 spectra of ST-images (ISTR) were produced
(corresponding to the total number of frames contained in the training
data). The SVD was then used for dimensionality reduction as described
below.

The rotation/translation invariant spectra of ST-images (ISTR),
stored in matrix 6400× 68,688 R, were used as the input for SVD. The
input matrix R was decomposed as shown in Eq. 9:

R=U*∑*V* (9)

The matrix U contains the new orthogonal bases, Bd, learned during
the training phase.

Fig. 4A (left) shows examples of bases (filters) learned by applying
the SVD to the training data. The contribution of each base to the
training set is shown in Fig. 4B. These contributions are stored in di-
agonal matrix sigma ∑ (Eq. 9). The first 30 bases were selected as shown
in Fig. 4B. Each spectrum of ST-image (ISTR) from the training set can be
composed from 30 bases weighted by values stored in matrix
V*(Fig. 4A, B) (Eq. 9).

Dimensionality reduction of the new data (data not used in the
training) is carried out by computing projections of ISTR onto the 30
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bases stored in matrix U (the new bases learned during the training
phase) (Eq. 10). The ISTR images of new data are stored as column
vectors Si (where i is the frame index) and the 30 bases are stored as
column vectors Bd (where d=1, 2, … D; D=30). Then the projections
are computed as shown below (Eq. 10):
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The I x D matrix M now contains projections of ISTR images to D
bases.
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In Fig. 4C the projections of ˜1500 consecutive images (˜ 50 s of
video) to the first 10 bases are shown. These projections can be thought
of as firing rates of artificial neurons responding to different features of
stimuli (ISTR). The first projection responds mostly to posterior
grooming motifs while the second projection responds to anterior mo-
tifs (the first two rows in Fig. 4C). We computed the 30 projections for
the entire data-set of 91 movies (50,000 frames per movie or ˜30min)
and obtained 4.9 million 30 dimensional vectors (stored as columns in
matrixM). These data were used for classification, described in the next
section.

There are two significant advantages of our method: first, it does not
require re-training of the bases with each new dataset. Once the bases
are computed during the training phase, they can be used for di-
mensionality reduction of new data (the same matrix U can be used)
and thus the new data is always represented by the same spatio-
temporal features. The second advantage is that computing the pro-
jections of new data to the bases is much faster than initial training with
SVD because it can be parallelized.

The 30 bases were sufficient for representation of various grooming
behaviors, as is shown by the t-SNE map in Fig. 4D. The t-SNE analysis
(van der Maaten and Hinton, 2008) allows us to visualize high di-
mensional data (30 dimensions in this case) in just two dimensions. (It
preserves local distances between datA–Points.) Note the good separa-
tion between anterior and posterior grooming motifs (red and blue
colors, respectively). The edges between the data points indicate tem-
poral transitions between datA–Points (consecutive images). Most
transitions occur within clusters representing the anterior or posterior
motifs, with only a few transitions connecting the two clusters. This
distribution of the data in the t-SNE map strongly suggests the hier-
archical organization of grooming behavior, with most transitions oc-
curring between individual grooming movements (IGMs) belonging the
same motif, e.g. head cleaning to front leg rubbing, and few transitions
between different motifs (between posterior and anterior grooming
behaviors).

3.6. Two-step classification using LDA

The classification of behavior was performed by Linear Discriminant
Analysis (LDA) (Welling, 2005) on the 30 spatiotemporal features, in
two steps corresponding to two behavioral time-scales, using human
labels of behavior as a reference (training data). The LDA is im-
plemented in Python using sklern library (https://scikit-learn.org/
stable/modules/generated/sklearn.
discriminant_analysis.LinearDiscriminantAnalysis.html).

The full dataset presented in this paper included 91 movies of
dusted flies, each 27.8min in length, starting from the time when the
flies were dusted. Behavioral labels and corresponding data from two
movies (57.6 min in total) were used for LDA training..

The 30 translation/rotation invariant spatiotemporal features were
extracted as projections to the bases trained with the training data-set.
This produced 4,600,000 datA–Points populating the 30-dimensional

space (30 dim vectors). Thus, the input data came in the form of a
30× 4,600,000 matrix M.

The LDA classification is performed in two steps, corresponding to
two different time-scales. In the first step the general behavioral context
was identified (anterior and posterior grooming motifs, whole-body
movements and periods with no detectable movements) then, in the
second step, the LDA was again applied, separately, to anterior and
posterior motifs to identify 6 behaviors: front leg rubbing (f), head
cleaning (h), abdominal cleaning (a), back leg rubbing (b), wing
cleaning (w) and whole-body movements (Wk). Below we describe both
steps in detail.

During the first step, windowed features are computed from the raw
spatio-temporal features (matrixM). We convolved the first five rows of
M, with the Savitzky-Golay kernel h (https://docs.scipy.org/doc/scipy-
0.15.1/reference/generated/scipy.signal.savgol_filter.html). The size of
the sliding Savitzky-Golay kernel is 90 (3 s of a 30 Hz movie) and the
step= 1 (Eq. 12):

=W M * hd d
30 30 (12)

The 30 x I matrix W now contains the 30 (smoothened) windowed
features of the entire data-set. Using human-generated behavior labels
(of anterior, posterior and walking behaviors) and the corresponding
training data from two movies (57.6min in total) we trained the LDA to
obtain a LDA-model for predicting the anterior, posterior and walking
behaviors - ModelAP. This model is used to predict the behaviors from
the smoothened spatio-temporal features (matrix W). Predictions are
expressed as probabilities of behaviors (outputs of the modelAP). Thus
in the first step the outputs of the modelAP are four time-series, cor-
responding to probabilities of the behavioral motifs (anterior, posterior,
walking and no movement or “standing”). When we subtract the
probability of anterior grooming (Ant) from the probability of posterior
grooming (Pos), we obtain a time-trace that best separates Ant from
Pos. We refer to it as Dim A–P. This is illustrated in Fig. 5A.

An example of Dim A–P, corresponding to one 1700-second movie is
shown in Fig. 5A and C (the colors correspond to behaviors as labeled
by humans, however, these labels were NOT used as a reference for LDA
training). A stationary threshold is then used to separate anterior from
posterior behaviors. In Fig. 5A the human-labeled ethogram (H) and the
machine-labeled ethogram (M), obtained by this procedure, are placed
below the Dim A–P projections as a reference and for comparison.

Fig. 5C is showing how the same data as in 5A is projected to the 3
dimensions obtained by LDA (Dim A–P, Dim f–h and Dim a–w – the last
2 are described in the next paragraph). Note that along the Dim A–P the
data fall in different parts of this space, so it can be reliably separated
by stationary thresholds.

Next, we carried out the second step of the classification. In this step
Anterior and Posterior motifs are further subdivided into behavioral
classes that correspond to IGMs as well as walking (Wk). The second
step is similar to the first step, except that raw spatiotemporal features
are used (as opposed to the windowed features used in the first step).
Crucially, however, the raw features are now added to the outputs of
the first step (i.e. probabilities of anterior, posterior and walking be-
haviors) as the inputs to the second step. The outputs of the first step
provide the temporal context. Thus the input training data for the
second step consists of: 30 raw spatio-temporal features and 3 outputs
of the first step (so 33 inputs in total). This expanded set of inputs in-
forms the LDA about the values of the raw features as well as about the
probabilities that an animal is engaged in a particular behavioral motif.

After LDA training with human labels we obtained a model for IGMs
– modelComb. The outputs of modelComb are expressed as prob-
abilities of grooming behaviors (IGMs) and walking (probability time-
series). Just as we did in the first step, we can subtract the probability of
one behavior from probability of another behavior to obtain the time-
series that best separates the two behaviors. In Fig. 5B we show the
time-series that separates the f and h behaviors – Dim f–h (top) and the
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time-series that separates a from b – Dim a–b.
In Fig. 5A,B examples of Anterior and Posterior behaviors are shown

in red and blue frames respectively. The final behavioral classes
(f,h,a,b,wk) are obtained by applying dynamic thresholds to the prob-
ability time-series (outputs of modelComb), specifically to Dim f–h, Dim
a–b and Dim a–w – i.e. the time-series that best separate pairs of
grooming behaviors. Stationary thresholds were applied to Dim A–P
and to the probability of walking. The dynamic thresholds are obtained
by smoothing data with a user-specified window (a 1-second window
was used here) and the stationary thresholds, manually set by the user
(set at zero here). Both, the dynamic and stationary thresholds need to
be set only once and they represent the only user-specified parameters
of this classifier. To improve the accuracy of classification we also
added two more time-series: the speed of displacement (whole body
movement) and the max light intensity change in the ST window
(strength of signal). See GitHub repository code for details of the im-
plementation.

The final classes are used to construct the “machine-labeled” etho-
grams (M) exemplified in Fig. 5B. Human-labeled ethogram (H) is also
shown for comparison. Fig. 5C (bottom) shows where the classified
behaviors (f, h, a, b, w, wk) fall in the space of the 3 LDA dimensions
(Dim A–P, Dim f–h and Dim a–w) after the second step of the classifi-
cation.

Alternative supervised or unsupervised machine learning methods
(other than the LDA) could be used on the 30 spatio-temporal features
in a similar two-step protocol.. The modularity of the ABRS process
allows us to test alternatives. For example, we initially applied a GMM
(Gaussian Mixture Modeling) based classifier that estimated the prob-
ability density, as well as k-means unsupervised method, which does
not depend on probability density estimation. The GMM-based classifier
discovered a high number of clusters in the training data, which had to
be then matched to human labels to assign the behavioral identity to
each of the discovered clusters (self-supervised learning). This proce-
dure occasionally resulted in inaccurate matching of machine-dis-
covered classes to human labels because of small temporal dis-
crepancies, such as occur at the initial and final frame of a behavior
bout. We considered time-independent centroid matching but this fails
to incorporate modeling of probability density, which dis-
proportionately affects rare behaviors. The GMM is also relatively slow,
which is problematic because it requires re-training with the whole
dataset every time it is run. We also tested other supervised machine
learning methods, such as dense neural networks or Convolutional
Neural Networks (CNNs) and obtained reasonable accuracy (see the
“dense neural network” code in the GitHub repository.) For our current
implementation of the ABRS, we selected LDA for its accuracy, speed,
and simplicity. LDA assigns identity to each point based on its position
on the axis which best separates the behavioral labels (by simulta-
neously minimizing intra-cluster variability and maximizing the dis-
tance between the clusters). LDA is also much more time-efficient and
does not require the re-training with the whole dataset each time it is
run.

3.7. Post-processing and application of heuristics

One of the advantages of machine learning approaches to behavior
analysis is the unbiased identification of repeated elements and the
principled clustering to show similarities and differences between these
elements. One of the advantages of human annotation is the ability to
generalize among similar actions and to reject illogical or impossible
transitions. During the development of ABRS, we hand-coded a lot of
grooming data, and we manually checked a lot of the video annotated
by ABRS. This lead to some insights into the behavior organization rules
that we have encoded in a final proofreading step applied after clus-
tering - essentially data-scrubbing to remove impossible things. We find
that grooming and walking do not occur simultaneously. We have not
seen extremely rapid transitions between front and back leg grooming

movements (anterior and posterior motifs). The speed of whole-body
motion can be used as the heuristic in the first step of the classification
or in the post-processing of ethograms, or both. It can also be used as an
additional feature (added to the 30 spatiotemporal features). The speed
(of body displacement) is calculated from the changes in position of the
fly, obtained in the tracking step (see Fig. 2C and Pre-processing of video
data and fly tracking).

Sometimes the back legs are completely occluded by the dusted
wings while flies are engaged in the back leg rubbing behavior and
those data points by themselves cannot be distinguished from periods of
inactivity (when nothing is moving). We have never observed a fly
engaging in back leg rubbing alone for an extended period of time (i.e.
they do not rub their legs without transitioning to another grooming
movement or whole-body movement.) Thus when no movement is
detected for 20 s or more we classify those data points as standing ra-
ther than back leg rubbing. Conversely, when no movement is detected
for less than 1/6 of a second (5 frames at 30 Hz) we do not count such a
short period as “standing”.

We have never observed a fly transitioning from anterior grooming
motif to posterior grooming motif and then right back to anterior motif
(or conversely) in less than two seconds. These transitions (Anterior →
Posterior → Anterior and Posterior → Anterior → Posterior, lasting less
than a second) were never observed even when we specifically looked
for them in the entire data-set of human labels (several hours of video
randomly sampled from hundreds of flies) nor can any such transitions
be seen in previously published ethograms (Seeds et al., 2014). There is
almost always more time spent during a motif transition itself, as the
flies need to change their posture. Even though some transitions can be
as fast as one second, we have never seen two such transitions per-
formed within a one-second-window. Thus we assume that this type of
a transition present in an automatically generated ethogram is an error
(we compared such machine-discovered transitions with human-pro-
duced ethograms and none turned out to be real). Therefore, very rapid
transitions back and forth between anterior and posterior grooming
motifs are eliminated from the ethograms during post-processing (for
example, if such a short period of posterior behavior is found within an
anterior motif we ignore it – i.e. we replace it with the anterior beha-
vior). To further de-noise the ethograms we also eliminate behavioral
motifs (anterior and posterior motifs) that last less than 1/6 of a second
(5 frames at 30 Hz). Analysis of human labels of the training data reviles
that such short motifs do not occur there. We set the minimum duration
for walking (wk) at 1/3 of a second.

It is key to point out that these are heuristics are based on the be-
haviors we have observed in wild-type flies, and that these corrections
are applied in the last, optional curation step. We do not implement this
step when using ABRS for behavior discovery or on datasets of mutant
flies, which do indeed violate many of these assumptions in experi-
mentally interesting ways.

3.8. Validation

To assess the quality of automatic behavior classification method we
compared the final output ethograms to human-scored ethograms. We
manually scored fly behavior using VCode software (ref:VCode and
VData, 2019) Fig. 6A shows one machine (M) and two human (H) la-
beled ethograms of a 27.8-minute movie of wildtype dusted fly’s be-
havior. Here the identified behaviors include only anterior grooming
motifs (Anterior), posterior grooming motifs (Posterior) and the whole-
body movements. The total agreement between human two observers is
99.2% and the agreement between machine and the human consensus
is 96.0%.

The human observers were specifically looking for the 5 categories
of grooming movements that are easy to recognize from the video clips.
When uncertain, the observers could play the same behaviors back and
forth at low speed. Behaviors that could not be clearly identified were
not labeled. The human observers did not communicate with each other
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and did not compare results (so their observations were independent).
Most disagreements between them occurred on the precise on/offsets of
the behaviors - see Fig. 6E. For consensus we used human generated
ethograms and retained the intersection where both humans agreed.
The confusion matrices below show the breakdown of the agreements
and disagreements between M and H (two human observers, H1 and
H2) for each behavioral category. The top row matrices show the ab-
solute number of agreements on the diagonal (H= rows, M= col-
umns). The off-diagonal terms are disagreements. The most common
disagreements arise when the output of M is “Wk” (whole-body
movements) and the human observation is “Posterior” (posterior
grooming), for both human observers (H1 and H2). The second row of
matrices shows the same data as above but normalized by the sum
across columns (so that all columns add up to 1).

Fig. 6B is analogous to 6A but subdivides the Anterior and Posterior
motifs into individual grooming movements (f, h, a, b and w). Not
surprisingly the agreements are less consistent than for the whole
grooming motifs but nevertheless good in terms of comparing agree-
ments between individual humans (H1, H2) and the agreements be-
tween the machine (M) and human consensus (H1+H2). Notice that
the most common disagreements are those between individual
grooming movements within the same motif, i.e. between f and h
(anterior grooming motifs) and between a and b (posterior grooming
motifs). After visually inspecting ethograms produced by both humans
and machine we conclude that most of these disagreements are due to
determination of the exact timing of individual grooming movements
(Fig. 6E). There is often ambiguity about when exactly an individual
grooming movement starts and ends, e.g. there is a short transition
period between pure front-leg rubbing (f) and pure head cleaning (h)
behaviors as the two do not appear to be completely discrete (see also
Fig. 8B for illustration). The transition periods between semi-con-
tinuous behaviors are not given a special label; therefore they are as-
signed f or h, depending on the side of the classification threshold that
they fall on during the LDA step.

3.9. Population analysis using automatic behavioral recognition method

We used the ABRS ethograms (Fig. 7A) to estimate the dynamics of
behavioral probabilities throughout the grooming period. The prob-
abilities of individual grooming movements typically change over time,
from when the flies are stimulated by dust until later, when they sta-
bilize. To measure these dynamics we first calculated the frequencies of
behavioral motifs as well as IGMs. This was achieved by counting all the
instances of the behaviors in the ethograms within a sliding time-
window (window width was 1000 frames or ˜3.3 s and the step was one
frame). We compared the changes in behavioral frequencies in two
epochs, early and late. To find a biologically relevant time-point which
would separate the early and late epochs we determined the average
“half-time”, defined as the average time it takes a fly to finish half of its
anterior grooming behavior. The half-times of all ethograms were then
computed (the cumulative frequency was equal to total frequency of
anterior grooming behavior divided by two) and we took the average of
that. The dynamics in behavioral frequencies for each behavior, in both
epochs, were measured by R-square (coefficient of correlation squared).

3.10. Intra-motif dynamics analysis

The f–h and a–b cycle lengths were computed by counting the
number of transitions (transition frequency) between the respective
IGMs in each fly ethogram (i.e. 1700sec of behavior). The number of
cycles per motif per ethogram then equals transition frequency divided
by the total amount of time spent in the motif. This analysis therefore
does not account for variable durations of the motifs, i.e. it is agnostic
to whether cycle lengths are correlated with motif lengths. We sorted
the ethograms according to the cycle lengths (for anterior and posterior
motifs separately) as shown in Fig. 8C. To find out how the cycle

lengths of different motifs or different epochs are related to each other
(as very similar cycle-lengths may suggest that the cycles are produced
by a shared pattern generation) we computed the correlations between
the anterior and posterior motif cycle lengths and the correlations be-
tween the epoch’s cycle lengths (for anterior motifs), using a correlation
function and obtained coefficients and p-values for each comparison.

4. Discussion

Exploring solutions to our problem of objectively quantifying fly
grooming behaviors from video led us to develop a method that is
potentially broadly applicable. The recent fusion of neuroethology and
computer science to form a new field of computational ethology
(Anderson and Perona, 2014; Egnor and Branson, 2016) allows a vir-
tuous cycle: ideas from biology inform and inspire technical advances
and innovation in machine learning/computer vision, while large-scale
computer-generated annotation of behavior from video enable both
behavior discovery and objective quantification.

Several recent methods recognize and quantify animal behavior
from video (reviewed in Robie et al., 2017b; Todd et al., 2017)). Many
of these methods have been developed using Drosophila. For example,
JAABA is a supervised machine learning system that analyzes the tra-
jectories of flies walking and interacting in large groups and identifies
temporal features based on trajectories of animal body positions and
orientations (obtained from ellipse fit to the whole body) which does
not provide information about such behaviors as antennal grooming,
for example. These features are used to generate behavioral classifiers
by with human labeled behavioral data (Kabra et al., 2013). The
method mainly uses spatial features to extract information about spatial
relationships between different animals. It has been used to study fly
aggression and several other behaviors (Hoopfer et al., 2015; Robie
et al., 2017a). Other methods using Drosophila are based on un-
supervised learning algorithms (reviewed in Todd et al., 2017). One
such method that discovers stereotyped and continuous behavioral
categories from postures of spontaneously behaving flies in an arena,
(Berman et al., 2014) uses spatial features and unsupervised learning
techniques to identify low-dimensional representation of postures
(“postural modes”), followed by time-series analysis of these “modes”
and low-dimensional spatial embedding. We refer to this as the “spatial
embedding method”, and it has been used to explore how flies shift
between behaviors according to hierarchical rules (Berman et al.,
2016). This method applies Radon transformation to align images, so
that rotation and translation invariance is achieved early on in the pi-
peline (In contrast, the ABRS does not require such alignment, employs
the Radon transform late in the pipeline, and applies the human-su-
pervised step of label-matching last.)

For fly grooming specifically, two previous behavior quantification
methods have been reported. One relies on the amount of residual dust
to detect grooming defects (Barradale, 2017), and the other adapts a
beam-crossing assay usually used in for analysis of circadian rhythms to
detect periods when the flies move but do not walk as a marker for time
spent grooming (Qiao et al., 2018).

More recently two powerful methods were reported for analysis of
animal pose from video data using deep neural networks: Deep Lab Cut
(Mathis, 2018) and LEAP (Pereira and Talmo, 2019). Both methods rely
on labeling of anatomical features in videos of animals and can extract
poses (configurations of the anatomical features).

Unfortunately, none of the existing methods suited the recording
conditions and intermediate spatiotemporal resolution required for our
particular research questions. Our behavioral paradigm requires freely
moving flies covered with changing amounts of dust. Whole-body
movement trajectories do not reveal which grooming movements the
fly is performing, some of the limb movements involved in grooming
occur hidden under the body (occlusions), the same grooming behavior
can occur in many different positions/locations/viewing angles, and the
fly’s appearance changes with time as the dust is removed. These
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attributes of our assay create challenges for the existing behavior re-
cognition systems.

To develop an automatic behavior recognition system suitable for
our experimental assay, we focused instead on temporal features. When
humans annotate grooming behavior, they often play videos backwards
and forwards at different speeds to label grooming movements, sug-
gesting that it is the dynamics of the movements that help them to
recognize specific behaviors. With the importance of temporal features
in mind, we designed ABRS to achieve this automatically. ABRS enables
reliable recognition of flexible sequences of fly grooming behavior de-
spite limited knowledge of the animal’s limb position, pose and or-
ientation. The system is based on recognizing shapes of movements in
space and time. The pipeline consists of signal processing techniques for
pre-processing of video data, followed by unsupervised learning
methods on two separate time-scales, and finally a supervised learning
step to label behavior. The primary advances include the strategy to
combine spatial and temporal features that extract movement sig-
natures without requiring any knowledge of the spatial context or even
the animal’s anatomy. As such, these features are invariant to the
subject’s location, orientation, and appearance. We compensate for the
lack of spatial information with additional temporal context, applying a
second time-scale. Here, we applied this method to reliably and quickly
recognize long sequences of fly grooming behaviors in response to dust
stimulus from massive amounts of video.

The ABRS, JAABA, spatial embedding, and pose estimation methods
have different strengths. An ideal behavior quantification/recognition
system might incorporate them all, with adaptive switching among them
depending on the nature of the video data (perhaps employing “artificial
attention” (Lanillos, 2015). To facilitate this future goal for the compu-
tational ethology community, we have constructed the code for the ABRS
in Python with separable modules. The code is available on GitHub
(https://github.com/AutomaticBehaviorRecognitionSystem/ABRS). At
present there is no GUI available but it may be developed in the future.
We hope the open source code will be improved and expanded by the
broader community, including the addition of functionality for closed-
loop experiments.

Here we have validated our method for recognition of fly grooming
behaviors, but we propose that because of its focus on dynamics and
temporal features rather than image alignment or anatomical features, it
could be much more generally applicable. We are now applying the
ABRS to decapitated flies (which also exhibit a range of behaviors, in-
cluding grooming), to genetically manipulated strains and different
species, as part of ongoing screens in our lab and even further diversi-
fication of experimental settings and animal models may be required in
future screens. These experiments suggest that with minimal modifica-
tion of parameters and training data, the ABRS software could be used to
quantify a broad range of behaviors where spatial context, anatomy and
even species are not pre-defined and where weighting temporal context
more heavily is advantageous. For example, it may be possible to in-
crease the time-window for ST-images to recognize behaviors in animals
that move more slowly or less repetitively than flies during grooming. To
increase the granularity of behavior (e.g. “antennal cleaning” and “eye
cleaning” rather than just “head cleaning”) spatial resolution can be in-
creased by reducing the spatial subsampling. ST-images themselves can
be expanded as well. We are currently testing the utility of 3-channel ST-
images (three colors), where the first channel is a spectral feature
(center-of-gravity), the second channel is moment-to-moment movement
(difference between consecutive frames) and the third channel is the raw
image. Other modifications that can be done in order to apply the ABRS
to other animal/behavior models include changing the number of spatio-
temporal features (dimensionality reduction) and replacing the su-
pervised learning method (currently LDA) with neural networks. For
example, in attempting to improve the accuracy of behavior recognition
in decapitated flies, we are using full dimensionality of the ST-images (no
dimensionality reduction at all) and we are applying convolutional
neural networks (ConvNets) directly to the ST-images (see https://

github.com/AutomaticBehaviorRecognitionSystem/ABRS for examples
of ConvNet models).

The core of our method is the rotation/translation invariant spectra
of ST-images (Fig. 3B), which represent temporal information extracted
from movements agnostic to their spatial location. As such, ABRS has
conceptual similarities to the bag-of-words approach, in which the in-
variances to various input transformations are achieved by discarding
the locations of image feature vectors (“visual words”) and only their
frequencies of occurrence in the image are retained (as in counting the
number of same words in a document and discarding the syntax of
sentence structure) (Sivic and Zisserman, 2009). Thus in our case we
similarly discard the phase of the spectra of ST-images while retaining
the power of the spectra (see Achieving rotation/translation in-
variance in METHODS and Fig. 3B).

Convolutional neural networks (CNNs) can also achieve invariances
to input transformations such as translation (in the first layers of the
network) and rotation (learned in deeper layers) (Pereira, 2018).
However, how these invariances are represented is still not clear and is
a subject of current research (Furukawa, 2017; Lenc and Vedaldi, 2015)
Invariances (or, more generally, equivariances) to various input trans-
formations can be achieved by data augmentation methods (Ratner
et al., 2017).

Building invariances into feature representations is an important
strategy in making computer vision work in less constrained settings,
and we have developed a translation and rotation invariant feature
representation that seems to be useful for unsupervised and supervised
behavior analysis.

Conceptually, our biologically-inspired emphasis on using temporal
features, on two separate time-scales, should serve as a useful model for
design of other behavior recognition software systems, including those
based on ConvNets. Multi-time-scale analysis or combinations of tem-
poral features with spatial context, can improve behavior classification
methods. The leg movements associated with human walking or
swimming may look roughly similar if only temporal features are
considered, but adding a spatial feature such as orientation (vertical vs.
horizontal) or environmental context (water vs. land) will differentiate
the two types of movements even though they initially appear similar
outside of the context. This two-step, two-time-scale approach separates
similar movements efficiently by providing the temporal context in
which they occur.

There are some natural extensions to ABRS itself. With minimal
modification, our method could be used for behavior discovery, as well
as automatic recognition of human-selected behaviors as we show here.
This option is available at low cost because we perform unsupervised
learning before the supervised step. Here we use human-selected be-
haviors (labels of grooming movements) to generate ethograms at the
very end in our work-flow, but we can easily apply unsupervised
learning methods (clustering algorithms) to the same spatiotemporal
features to discover new behaviors. In the future we can also combine
supervised with unsupervised methods by using human labels to find all
instances of a behavior (e.g. head cleaning) and then apply un-
supervised learning (without specifying how many behavioral classes to
expect) to discover variations on the behavioral themes (e.g. cleaning of
different parts of the head). Therefore we suggest using ABRS in com-
bination with unsupervised behavior classification methods to first
discover new behavioral varieties, create labels of those behaviors, and
then apply the supervised step of the ABRS to find those behaviors in
new data. In careful observations of the behaviors that we found by
applying unsupervised learning in wild-type grooming flies, we did not
identify any previously unknown types of repeated movements that
could be associated with grooming, but we expect that this may change
when we include genetically modified flies in our analysis. New or
deviant grooming movements should be relegated to distinct clusters,
enabling us to recognize more behaviors important to the fly than our
human biases may perceive. Currently we are only identifying beha-
viors that are usually mutually exclusive in normal flies (grooming
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movements OR walking), however if a user is interested in identifying
behaviors that occur simultaneously (e.g. grooming AND walking), this
could probably be accomplished by creating labels for combinations of
the behaviors (this could be done manually or by applying an un-
supervised learning method to identify clusters of such behavioral
combinations). Finally, due to the flexibility of ABRS and less reliance
on specific anatomical features, it could in the future be used with other
animal models such as mice or worms.

By focusing on movements and being robust to changing subject
appearances the ABRS fills an empty niche in the computational
ethology ecosystem. Together with JAABA, spatial embedding, Deep
Lab Cut, LEAP and other methods researchers now have an extensive
toolkit to choose from. Once again, biology suggests computational
solutions and computational methods advance biological knowledge by
revealing new phenomena.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.jneumeth.2019.
108352.
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